A Comparison of Simple Agents Implemented in Simulated Neurons
نویسندگان
چکیده
Neuromorphic embodied cell assembly agents that learn are one application being developed for the Human Brain Project (HBP). The HBP is building tools, available for all researchers, for building brain simulations. Existing simulated neural Cell Assembly agents are being translated to the platforms provided by the HBP; these agents run on neuromorphic chips in addition to von Neumann based computers. Whilst translation of the agents to the software technology demanded by the HBP platforms is relatively straightforward, porting to the neuromorphic chips is a non-trivial software engineering task. Versions of the simple agent, CABot1, have been developed in fatiguing leaky integrate and fire neurons, Izhikevich neurons and leaky integrate and fire neurons. These have been developed to run in Java, PyNN, NEST and Neuromorphic hardware. All variants are roughly equivalent. The agents view a picture, implement simple commands, and respond to a context sensitive directive involving the content of the picture. By running variants of these agents on different platforms, and with the different simulated neural models, implicit assumptions in these models can be revealed. Once these Cell Assembly agents have been translated and embodied in a virtual environment, they will be extended to learn more effectively. The use of neural hardware supports the real time simulation of many more neurons, providing a platform for exploration of more complex simulated neural systems.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملTranscranial Focused Ultrasound Modulates Electrical Behavior of the Neurons: Design and Implementation of a Model
Background: Recently, ultrasonic neuromodulation research has been an important and interesting issue. Ultrasonic neuromodulation is possible by the use of low-intensity transcranial focused ultrasound (tFUS) to stimulate or inhibit the neural structures. The primary capability of this method is the improvement in the treatment progress of certain neurological and psychiatric disorders noninvas...
متن کاملA New Optical Implementation of Reversible Fulladder Using Optoelectronics Devices
This study introduces a reversible optical fulladder. Also optical NOT and NOR gates are implemented through Electro-Absorption-Modulator / Photo Detector (EAM/PD) pairs, were utilized for fulfilling reversible R gate. Then, reversible fulladder was designed based on the proposed reversible optical R gate. The operation of the suggested fulladder was simulated using Optispice and it was fou...
متن کاملA New Optical Implementation of Reversible Fulladder Using Optoelectronics Devices
This study introduces a reversible optical fulladder. Also optical NOT and NOR gates are implemented through Electro-Absorption-Modulator / Photo Detector (EAM/PD) pairs, were utilized for fulfilling reversible R gate. Then, reversible fulladder was designed based on the proposed reversible optical R gate. The operation of the suggested fulladder was simulated using Optispice and it was fou...
متن کاملComparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums
Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015